

Netest: An Tool to Measure the Maximum Burst Size, Available
Bandwidth and Achievable Throughput

Guojun Jin Brian Tierney

Distributed Systems Department
Lawrence Berkeley National Laboratory
1 Cyclotron Road, Berkeley, CA 94720

g_jin@lbl.gov

Abstract

Distinguishing available bandwidth and achievable
throughput is essential for improving network application
performance. Achievable throughput is the throughput
considering a number of factors such as network protocol,
host speed, network path, and TCP buffer space, whereas
available bandwidth only considers the network path.
Without understanding this difference, trying to improve
network application performance is like the “blind men
feeling the elephant” problem [4]. In this paper, we define
and differentiate

bandwidth

 and

throughput

, and discuss
which part of each is

achievable

 and which is

available

.
Also, we introduce and discuss a new concept, Maximum
Burst Size, that is crucial to for obtaining good network
performance. A new tool,

netest

, is introduced which is
designed to help users to determine the

available

 band-
width, and provides information to

achieve

 better through-
put while fairly sharing the available bandwidth, thus
reducing misuse of the network.

I. I

NTRODUCTION

Available bandwidth is obtained via a simple arithmetic
operation: capacity minus utilization. However, this is not
clear to many developers nor users of networked
applications. After performing TCP tuning techniques,
such as those explained in [8], a user or developer might
think that they have fully utilized available bandwidth.
However it quite possible that they are only utilizing the
bandwidth that their application is capable of achieving,
and not all the available bandwidth. For example, if a store
has three bottles of beer, after one bottle of beer is sold, the
available beer is two bottles. However, one might argue
that the available beer is three bottles because someone
could possibly grab all three bottles of beer before the
buyer leaves the store. This demonstrates achievement v.s.
availability. It is important that what is

available

 and what
is

achievable

 must be differentiated and defined clearly.

When the available bandwidth is unknown, the best
network performance is obtained via adaptive control

mechanisms such as TCP. However, TCP often does not
perform well in high bandwidth long delay paths, due to
the fact that it recovers very slowly from packet loss [4].
Techniques to get better performance over high-speed
network include reliable UDP-based methods [10][3][12],
and using parallel TCP streams [9][1]. Without knowing
the Maximum Burst Size (MBS — the maximum number
of bytes can travel through a network path without causing
packet loss), both of those mechanisms potentially violate
policy of fairly sharing network resources. This paper
shows how knowledge of the MBS can aid in optimal and
fair use of the network.

In this paper, we explain what is available and what is
achievable in the network, then discuss some real use
cases where applications were achieving much lower than
expected performance based on the available network
bandwidth. We introduce

netest

 (pronounced “net”-”est”,
short for network estimator), that is designed to provide
information about each element on a path between two end
hosts. This information includes the available bandwidth
of this path and/or the maximum achievable throughput
between the two end hosts.

Netest

 can help to identify the
source of poor network performance such as a problematic
router, sender host, receiver host, lack of TCP buffers, and
so on.

Netest

 also provides advice on what one can do to
improve application throughput. We use

netest

 in a case
study and show how to interpret

netest

 output.

II. T

ERMINOLOGY

In this section, we distinguish available and achievable,
bandwidth and throughput, and provide the definitions of
the available bandwidth, the achievable throughput and the
maximum throughput.

Bandwidth

 — the speed that a network element can
forward traffic. It has two characteristics — physical
and available, and both of them are independent of
end hosts and protocol type.

• Physical bandwidth

, or capacity (

C

), is the
theoretical maximum physical-layer throughput of a
network element or network link, or end-to-end path.

• Utilization

 (

U

) is the percentage of capacity
currently being consumed by aggregated traffic on a link
or path:

• Available bandwidth

 (

A

) is the capacity minus
utilization over a given time interval. This is applicable
to paths, links, routers or switches.

A

(t

s

, t

e

) = Capacity - Traffic

=

C

×

 (1 -

U

)

≠

A

(T

window

)

T

window

 = t

s

 - t

e

t

s

 is the time starts the measurement

t

e

 is the time ends the measurement

Throughput

 — amount of data that is successfully
sent from one host to another via a network. It may be
limited by every component along the path from
source host to destination host, including all hardware
and software. Throughput also has two characteristics
— achievable and maximum.

•

Maximum throughput is the best transfer rate that
can be successfully performed between two end hosts if
they are connected back-to-back.

•

Achievable throughput is the throughput between
two end points under specifically given conditions, such
as transmission protocol, end host hardware, operating
system, TCP parameters, and so on. This characteristic
represents the performance that an application might
achieve from one specific host to another across a given
network path. Depending on where the bottleneck is,
achievable throughput may or may not correlate with
available bandwidth.

Measurement of available bandwidth depends strongly
on the time interval used for the measurement. For
example, Figure 1 shows the network utilization measured
with both 50 ms and 2.5s time intervals. Available
bandwidth is not, however, an indication of what an

application can actually expect to obtain. For this,
achievable throughput is the proper measurement. To
make this clear, we examine the behavior when UDP
traffic competes with TCP. If a path has N% of its capacity
used by TCP traffic, the available bandwidth is (100-N)%.
When a UDP stream comes in at a rate of 90% line speed,
soon or later, the UDP traffic will gain the 90% of total
bandwidth, thus causing TCP throughput drop to 10% of
the capacity. That is, UDP achieved the maximum
throughput by aggressively taking other application’s
bandwidth, while TCP achieved lower throughput because
of its congestion control algorithm. The question is how to
make a protocol like TCP utilize the available bandwidth
without unfairly disturbing current traffic and without
losing desired bandwidth. The answer is to use the
maximum burst size (MBS) as illustrated by the following
case study.

The

maximum burst size

 is the maximum number of
bytes a router can absorb without dropping a packet. This
is determined by the size of the router queue, and by the
current cross traffic at that router. Not exceeding the MBS
is the key to obtaining good achievable throughput.

III. C

ASE

 S

TUDY

In this section, we analyze a couple of typical cases
where TCP and even UDP applications failed to obtain
desired performance on the high-speed network.

A. Maximum Burst Size (MBS)

When tuning TCP connections, a common technique is
to set the TCP buffer size to the size of the bandwidth-
delay product (BDP) of the path. For example, for a 1Gb/s
path with 80 ms RTT, one might set the TCP buffers to 10
MB, which allows the host to send a burst of packets up to
that size. But if the MBS of the bottleneck router is only
2MB, then packets will get dropped.

This typical example was an 8-hop network path with
30 ms delay, where the bottleneck link was OC-12 (622
Mb/s). This was not a long delay path, but TCP throughput
was less than 10 Mb/s, and UDP throughput was around
80 Mb/s. The utilization reported by SNMP was between
5-10% at the bottleneck link. We ran

netest

 on this path
with 660 Mb/s sending rate and found the maximum burst
size was only 82K bytes.

Netest

 suggested to run pipechar
[7] with option “-Q” to determine where is the bottleneck.
Pipechar showed that router 7 (OC-12) caused this short
queue behavior. Under this circumstance, use of
bandwidth delay product will set TCP congestion window

to

This allows TCP to send a large burst which exceed the
MBS, thus causing the narrow-link router to drop packets

U Traffic
C

------------------=

Figure 1 Available bandwidth at 2 different time intervals

0.03s 622 10× 6b s⁄× 18.66Mbits 2.3325MBytes= =

when cross traffic exists, which was almost always true.
The TCP congestion window then will shutdown and the
maximum throughput will be limited to

Due to retransmissions the actual achievable throughput
was even lower.

UDP throughput also depends on the burst size and rate
of the traffic. A 82KB effective queue of the bottleneck
router implies that the maximum burst duration (at line
speed, 622 Mb/s in this case) for both probe traffic and
cross traffic to avoid overflow is:

because when a burst leaves the previous router, it will
travel at link (line) speed. Since we can characterize all
cross traffic as one aggregated stream, each stream
(aggregated cross traffic and measurement traffic) has a
minimum 1.05466 ms safety burst period (for router to
drain two 82KB bursts on average according to the
effective queue size) to not overflow the smallest queue on
this path. Without knowing how to control the burst, UDP
throughput will vary depending on how many cross traffic
bursts have a duration longer than 1.05466 ms (exceed
82KB in length). The more big bursts of cross traffic, the
lower the UDP throughput will be.

Burst control can help to increase throughput under this
circumstance. Two burst sizes were chosen to illustrate
this issue. One UDP stream had a 160KB burst size (twice
as big as a safety burst length to cause average 50% packet
drop) and 20 ms burst period (context switch takes slightly
over 10 ms, so rounded up to 20 ms for easy computation).
The other UDP stream had 40KB burst (half the size of the
safety burst length to minimize the packet drop, its burst
duration — 501.5

µ

s at this line speed — is approximately
one half of the burst period to allow router to drain the
traffic), and 1 ms burst period to get the maximum
throughput. In the first stream, 50 bursts can be sent every
second, so the maximum transfer rate should be

and 32 Mb/s was expected because of predicted 50%
packet drop rate. In the second stream, the maximum
throughput should be 320Mb/s since 1000 bursts can be
transferred in one second. In 30 tests for each stream, the
160KB burst stream gave a throughput range of 44~49
Mb/s (it is assumed that not all bursts had encountered a
large cross traffic burst, so the throughput is higher). The
40KB burst stream achieved 300 Mb/s throughput on this
path, which is 7% below the expectation. This is
reasonable due to context switch time and possible packet
drop. For confirmation, network engineers proposed an
experimental solution: they added a switch with 8M-byte

queue in front of the router 7 as a buffer that temporarily
solved the problem.

This case and further study [1] show that if burst size
can be controlled properly, a simple reliable protocol may
be built to replace UDP and TCP to achieve optimum
throughput to utilize and fairly share the available
bandwidth with current traffic.

B. Parallel stream TCP

Parallel stream TCP is used to overcome the problem
that single TCP stream recovers slowly from loss on high
bandwidth delay product networks. This happens because
TCP congestion window is not large enough to fill up the
entire pipe. Because TCP streams have independent
congestion windows, using parallel stream TCP can make
the aggregated congestion window large, thus, producing
higher aggregated TCP throughput. However, the parallel
TCP streams may grab bandwidth from other TCP traffic,
allowing unfair use of bandwidth [6].

Figure 2 shows two cases using parallel stream TCP on
the same path — the top one is between two fast hosts, and
the lower one is from an improperly patched Solaris host.
The top line in the graph shows that if the number of
parallel streams is more than necessary, it will cause
congestion on the network and reduce the performance. It
shows that two parallel TCP streams had utilized available
bandwidth because the aggregated throughput was less
than double the single stream TCP throughput. 3 to 4
streams had more competition with other traffic, but much
less gain in throughput. 5 to 8 streams aggressively took
bandwidth from other traffic to maximize the throughput,
and even more streams not only competed with other
traffic, but also competed with each other, thus causing
performance degradation.

The lower line in the graph (Solaris) presented an
amazingly smooth curve up to 122 parallel TCP streams to
obtain the maximum throughput. This is highly unusual.
Tuning techniques did not help to increase any single TCP
throughput. The default behavior was measured by netest

82KB 8bits Byte⁄×
0.03s

--- 21.87Mb s⁄=

MBS
LineSpeed
--------------------------- 82KB

622Mb s⁄
------------------------ 1.05466ms= =

160KB 8bits Byte 50 s⁄×⁄× 64Mb s⁄=

Figure 2 parallel stream TCP throughput

in Figure 3. The advisory section extrapolated what could
cause such behavior.

Figure 4, shows the results of running netest using the
suggested “-FullD” option, which sets the receive buffer to
be as large as the send buffer on the sending host. (This
option was added to detect a problem in Solaris that we
have observed on and off over the past several years. In
some versions of Solaris, it appears that the TCP send
buffers are not increased unless the TCP receive buffer
size on the sending host is also increased, even when no
traffic is traveling in that direction). This increased
achievable throughput by a factor of 22. This problem was
only observed on one host on the tested subnet, and was
not a problem from a different Solaris host to the same
destination. It is likely that this is an issue with this version
of Solaris on this host. Possible reasons to explain why the
single stream TCP performance is still low are described
in a paper by Hacker [6].

These examples depict that the parallel stream
technique must be used properly with knowledge on how
parallel streams can improve the performance. Improper
use of parallel streams can cause unfair use of the network,
even though it maximizes the achievable throughput. Too
many streams also waste resources, for example using 112
streams to achieve the maximum achievable throughput
where 3 streams is adequate. The proper use of parallel
TCP streams is illustrated in Figure 5. The optimal number
of parallel streams is at the lower intersection of the edge
of the shaded area and the curve. The number of streams

within the shaded area may increase the achievable
throughput, but begins to disturb other traffic.

To summarize, achievable throughput is the most useful
characteristic for applications to base their end-to-end
performance expectations. Using it in place of available
bandwidth helps avoid unnecessary effort attempting to
tune systems and applications beyond what is possible.

IV. N

ETEST

Netest

 is designed to measure achievable throughput
and available bandwidth in a minimally intrusive manner.
It can measure available bandwidth accurately in a few
seconds [8]. Netest provides useful information which
TCP applications can use to improve their performance
and achievable throughput without requiring network
expertise. The basic usage is very simple:

remote

_

server%

netest

local_client%

netest

 -t remote_server

Sample

netest

 results are shown in Figure 6, which
demonstrates a common case. This path has a lot of
available bandwidth, but an application of single stream
TCP with MBS-tuned TCP buffers of 6 MB only achieved
475.5 Mb/s achievable throughput. This is because to
achieve 800 Mb/s TCP throughput requires a 16 MB
congestion window. Therefor, using 2 parallel TCP
streams will fully utilize the available bandwidth on this
path.

Netest

 output has several sections:

•

The verbose section (shown in Figure 6) shows the
hardware information of both end hosts plus the
minimum/average/maximum TCP throughput detected
during the measurement.

•

The statistics section tells how long

netest

 ran to
get the result, and how much bandwidth was used. Also,
it tells the minimum, average, and the maximum TCP
throughputs that were achieved during this test.

--- General statistics ---
Average bandwidth used in testing: 5.5436 Mb/s in 171.6751 sec
TCP transf rate: min 5.6854 / avg 5.9354 / max 43.2980 Mb/s

--- General section ---
 Round Trip Time (RTT): 78.8000 ms
 Maximum burst size: 6029312 Bytes

--- UDP section ---
 Single stream UDP throughput: 347.3039 Mbps
 Multi- stream UDP throughput: 347.3039 Mbps
 Use of multiple streams is not recommended

--- TCP section ---
Optimal TCP Window size: 766464 Bytes

 Single stream TCP throughput: 6.1854 Mbps
 Use of parallel TCP streams: is recommended

 50 TCP strms can fully utilize the Available BW (estimated)

--- Advisory section ---
Kernel may need patch

 Please rerun test with -FullD
maximum throughput is around 391.624 Mb/s limited by local kernel

Figure 3 automatic mode netest from SLAC to ORNL

Figure 4 Use same bigger buffer for both Tx/Rx on the same host

...
--- TCP section ---
 Optimal TCP Window size: 2254493 Bytes
 Single stream TCP throughput: 136.7045 Mbps
 Use of parallel TCP streams: is recommended

3 TCP streams can fully utilize the Available bandwidth

Point where available band-
width is fully utilized

Point where parallel streams
are very intrusive

Competing with other traffic

Competing with all resources

Number of parallel TCP Streams

T
hr

ou
gh

pu
t

Asymptotic

Figure 5 Parallel TCP throughput

•

The general section reports the round trip time
(RTT) and the maximum burst size (MBS). The MBS is
the maximum number of bytes that can be sent
continuously from the source host to the destination host
without causing any of network elements along the path,
including the receiving host, to drop a packet. This is an
important characteristic missing from most other tools.

•

The UDP section reports the

achievable

throughput

 of single stream UDP. Based on single
stream UDP throughput and the hardware information,

netest

 may also measure 2-parallel-stream UDP to
determine if the bottleneck is at the kernel of the
sending/receiving host.

•

The TCP section contains the information for
tuning TCP-based application performance. It provides
information on two primary TCP categories: optimal
TCP window size (sending/receiving buffer space), and
the expected single stream TCP throughput.

Netest

 can
also report the number of parallel TCP streams required
to fully utilize the available bandwidth, and the number
of parallel TCP streams where it starts to become
intrusive to other traffic on the network.

•

The Advisory section provides additional
information for solving problems that cause poor
performance. For example, if a router does not allow IP
fragmentation, or is misconfigured in some way.

V. C

ONCLUSION

This paper shows that distinguishing available
bandwidth from achievable throughput is crucial to fully
utilize the available bandwidth without interfering other
traffic. We showed how the MBS is very important to
avoid dropping packets, which is important for good
performance. The

netest

 tool can be used to help tune
network applications, analyze network problems, and
provide useful information on how to resolve problems. It
is easy to use and less intrusive than many similar tools. It
is a useful tool to help users understand fair use of
available bandwidth in order to maximize achievable
throughput.

VI. A

CKNOWLEDGMENTS

This work was supported by the Director, Office of Science.
Office of Advanced Scientific Computing Research.
Mathematical, Information, and Computational Sciences
Division under U.S. Department of Energy Contract No.
DE-AC03-76SF00098. This is report no. LBNL-48350

VII. R

EFERENCES

[1] D. Agarwal, J. González, G. Jin, B. Tierney, “An Infrastructure for
Passive Network Monitoring of Application Data Streams”, PAM, April
2003

[2] W. Allcock, J. Bester, J. Bresnahan, et.al., “Secure, Efficient Data
Transport and Replica Management for High-Performance Data-
Intensive Computing”, 2000.

[3] Tom Dunigan, “Almost TCP over UDP (ATOU)”, Available:
http://www.csm.ornl.gov/~dunigan/netperf/atou.html

[4] Sally Floyd, “HighSpeed TCP for Large Congestion Windows”,
Available: http://www.icir.org/floyd/hstcp.html

[5] Jill Gemmill, “Blind men felling the elephant managing application
network performance: standards, tools and challenges”, Integrated
Design and Process Technology Vol. 1, p. 63-69, June 2001

[6] T. J. Hacker, Brian D. Athey, The End-to-End Performance Effects of
Parallel TCP Sockets on a Lossy Wide-Area Network, Aug. 2001.

[7] G. Jin, G. Yang, B. Crowley, D. Agarwal, “Network Characterization
Service (NCS)”, HPDC-10 Symposium, August 2001

[8] G. Jin, “Algorithms and Requirements for Measuring Network
Bandwidth”, LBNL Report: LBNL-48330

[9] H. Sivakumar, Stuart Bailey, and Robert L. Grossman. “PSockets:
The case for application-level network striping for data intensive
applications using high speed wide area networks”. In IEEE
Supercomputing 2000.

[10] H. Sivakumar, R. L. Grossman, M. Mazzucco, Y. Pan, Q. Zhang,
“Simple Available Bandwidth Utilization Library for High speed Wide
Area Networks”, Resource: http://www.dataspaceweb.net/sabul.htm

[11] B. Tierney, “TCP tuning guide for distributed application on wide
area networks”, USENIX & SAGE Login, vol. 26, No. 1, Feb. 2001

[12] S. Wallace, “Tsunami: A Hybrid TCP/UDP based file transfer
protocol”, Available: http://www.ncne.nlanr.net/training/techs/2002/
0728/presentations/200207-wallace1_files/v3_document.htm

Figure 6 Netest result on a long delay path cross country

local CPU speed 1394.10 MHz AMD
usable local mem 250 MBytes
mem bus speed 512 MBps
max mem copy speed 320 MBps
min mem copy speed 295 MBps
NIC speed 814.288 Mb/s

Remote server is Ver2 RC-10 2003-01-02
Linux Host-97-16 2.4.19-net100
has 1 thread running at Func0
usable remote mem 883 MBytes
mem bus speed 785 MBps
max mem copy speed 514 MBps
min mem copy speed 496 MBps
NIC speed 1000.5 Mb/s

TCP transf rate: min 22.2157 / avg 180.5447 / max 804.0995 Mb/s

--- General section ---
 Round Trip Time (RTT): 158.9000 ms
 Maximum burst size: 6029312 Bytes

--- UDP section ---
 Single stream UDP throughput: 484.8945 Mbps
 Multi- stream UDP throughput: 496.510 Mbps

Use of multiple streams is not recommended

--- TCP section ---
 Optimal TCP Window size: 6029312 Bytes
 Single stream TCP throughput: 475.5225 Mbps
 Use of parallel TCP streams: is recommended
 2 TCP streams can fully utilize the Available bandwidth

Max throughput is around 804.1 Mb/s limited by network

